일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- Kafka
- Tableau
- airflow
- 코테 연습
- SQL
- Snowflake
- HTML
- AWS
- 팀 프로젝트
- PCCP
- Selenium
- 슈퍼셋
- 데이터 시각화
- cloud platform
- beuatifulsoup
- 코딩 테스트
- Til
- GCP
- 데브코스
- 코딩테스트
- Spark
- django
- VPC
- superset
- 데이터 엔지니어
- Today
- Total
주니어 데이터 엔지니어 우솨's 개발일지
데이터 엔지니어링 52일차 TIL 본문
학습내용
구글시트 연동
1. 구글시트 API를 활성화하고, 구글 서비스 어카운트로 생성한 후 그 내용을 JSON파일로 다운로드
2. 어카운트에서 생성해준 이메일을 조작하고 싶은 시트에 공유
3. Airflow DAG쪽에서 해당 JSON 파일로 인증하고 시트를 조작
Admin-Variable
google_sheet_access_token 설정
- Key = 구글 서비스 어카운트의 JSON
Admin-connection
aws_conn_id 설정 (S3)
redshift_dev_db 설정(Redshift)
redshift_summary.py - 구글시트에서 S3로 복사
from airflow import DAG
from airflow.macros import *
from airflow.utils.decorators import apply_defaults
from airflow.exceptions import AirflowException
from airflow.hooks.postgres_hook import PostgresHook
from airflow.operators.python_operator import PythonOperator
import logging
from glob import glob
"""
Build a summary table under analytics schema in Redshift
- Check the input tables readiness first
- Run the SQL using a temp table
- Before swapping, check the size of the temp table
- Finally swap
"""
def load_all_jsons_into_list(path_to_json):
configs = []
for f_name in glob(path_to_json+ '/*.py'):
# logging.info(f_name)
with open(f_name) as f:
dict_text = f.read()
try:
dict = eval(dict_text)
except Exception as e:
logging.info(str(e))
raise
else:
configs.append(dict)
return configs
def find(table_name, table_confs):
"""
scan through table_confs and see if there is a table matching table_name
"""
for table in table_confs:
if table.get("table") == table_name:
return table
return None
def build_summary_table(dag_root_path, dag, tables_load, redshift_conn_id, start_task=None):
logging.info(dag_root_path)
table_confs = load_all_jsons_into_list(dag_root_path + "/config/")
if start_task is not None:
prev_task = start_task
else:
prev_task = None
for table_name in tables_load:
table = find(table_name, table_confs)
summarizer = RedshiftSummaryOperator(
table=table["table"],
schema=table["schema"],
redshift_conn_id=redshift_conn_id,
input_check=table["input_check"],
main_sql=table["main_sql"],
output_check=table["output_check"],
overwrite=table.get("overwrite", True),
after_sql=table.get("after_sql"),
pre_sql=table.get("pre_sql"),
attributes=table.get("attributes", ""),
dag=dag,
task_id="anayltics"+"__"+table["table"]
)
if prev_task is not None:
prev_task >> summarizer
prev_task = summarizer
return prev_task
def redshift_sql_function(**context):
"""this is a main Python callable function which runs a given SQL
"""
sql=context["params"]["sql"]
print(sql)
hook = PostgresHook(postgres_conn_id=context["params"]["redshift_conn_id"])
hook.run(sql, True)
class RedshiftSummaryOperator(PythonOperator):
"""
Create a summary table in Redshift
:param input_check: a list of input tables to check to make sure
they are fully populated. the list is composed
of sql (select) and minimum count
:type input_check: a list of sql and count
:param main_sql: a main sql to create a summary table. this should
use a temp table. this sql can have more than one
statement
:type main_sql: string
:input output_check: output validation. It is a list of sql (select)
and minimum count
:type output_check: a list of sql and count
:input overwrite: Currently this only supports overwritting (True)
Once False is supported, it will append to the table
:type overwrite: boolean
"""
@apply_defaults
def __init__(self,
schema,
table,
redshift_conn_id,
input_check,
main_sql,
output_check,
overwrite,
params={},
pre_sql="",
after_sql="",
attributes="",
*args,
**kwargs
):
self.schema = schema
self.table = table
self.redshift_conn_id = redshift_conn_id
self.input_check = input_check
self.main_sql = main_sql
self.output_check = output_check
# compose temp table creation, insert into the temp table as params
if pre_sql:
main_sql = pre_sql
if not main_sql.endswith(";"):
main_sql += ";"
else:
main_sql = ""
main_sql += "DROP TABLE IF EXISTS {schema}.temp_{table};".format(
schema=self.schema,
table=self.table
)
# now we are using "CREATE TABLE ... AS SELECT" syntax
# we used to create a temp table with the same schema as the main table and then insert into the temp table
main_sql += "CREATE TABLE {schema}.temp_{table} {attributes} AS ".format(
schema=self.schema,
table=self.table,
attributes=attributes
) + self.main_sql
if after_sql:
self.after_sql = after_sql.format(
schema=self.schema,
table=self.table
)
else:
self.after_sql = ""
super(RedshiftSummaryOperator, self).__init__(
python_callable=redshift_sql_function,
params={
"sql": main_sql,
"overwrite": overwrite,
"redshift_conn_id": self.redshift_conn_id
},
provide_context=True,
*args,
**kwargs
)
def swap(self):
sql = """BEGIN;
DROP TABLE IF EXISTS {schema}.{table} CASCADE;
ALTER TABLE {schema}.temp_{table} RENAME TO {table};
GRANT SELECT ON TABLE {schema}.{table} TO GROUP analytics_users;
END
""".format(schema=self.schema,table=self.table)
self.hook.run(sql, True)
def execute(self, context):
"""Do input_check first
- input_check should be a list of dictionaries
- each item in the dictionary contains "sql" and "count"
"""
self.hook = PostgresHook(postgres_conn_id=self.redshift_conn_id)
for item in self.input_check:
(cnt,) = self.hook.get_first(item["sql"])
if cnt < item["count"]:
raise AirflowException(
"Input Validation Failed for " + str(item["sql"]))
"""
- create a temp table using create table like
- run insert into the temp table
"""
return_value = super(RedshiftSummaryOperator, self).execute(context)
"""Do output_check using self.output_check
"""
for item in self.output_check:
(cnt,) = self.hook.get_first(item["sql"].format(schema=self.schema, table=self.table))
if item.get("op") == 'eq':
if int(cnt) != int(item["count"]):
raise AirflowException(
"Output Validation of 'eq' Failed for " + str(item["sql"]) + ": " + str(cnt) + " vs. " + str(item["count"])
)
else:
if cnt < item["count"]:
raise AirflowException(
"Output Validation Failed for " + str(item["sql"]) + ": " + str(cnt) + " vs. " + str(item["count"])
)
"""Now swap the temp table name
"""
self.swap()
if self.after_sql:
self.hook.run(self.after_sql, True)
return return_value
SQL_to_sheet.py - S3에서 구글시트로 복사
from airflow import DAG
from airflow.operators.python import PythonOperator
from plugins import gsheet
from datetime import datetime
def update_gsheet(**context):
sql = context["params"]["sql"]
sheetfilename = context["params"]["sheetfilename"]
sheetgid = context["params"]["sheetgid"]
gsheet.update_sheet(sheetfilename, sheetgid, sql, "redshift_dev_db")
with DAG(
dag_id = 'SQL_to_Sheet',
start_date = datetime(2022,6,18),
catchup=False,
tags=['example'],
schedule = '@once'
) as dag:
sheet_update = PythonOperator(
dag=dag,
task_id='update_sql_to_sheet1',
python_callable=update_gsheet,
params = {
"sql": "SELECT date, nps FROM analytics.nps_summary order by date",
"sheetfilename": "spreadsheet-copy-testing",
"sheetgid": "RedshiftToSheet"
}
)
Airflow API 활성화
- airflow.cfg의 api 섹션에서 auth_backend의 값을 변경
[api]
- auth_backend = airflow.api.auth.backend.basic_auth
- docker-compose.yaml에는 이미 설정이 되어 있음 (environments)
- AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth,airflow.api.auth.backend.session'
Airflow API의 사용예
/health API 호출 : curl -X GET --user "monitor:MonitorUser1" http://localhost:8080/health
1. 특정 DAG를 Trigger하기(ex)
curl -X POST --user "airflow:airflow" -H 'Content-Type: application/json' -d '{"execution_date":"2023-05-24T00:00:00Z"}' "http://localhost:8080/api/v1/dags/HelloWorld/dagRuns"
2. 모든 DAG를 리스트하기
curl -X GET --user "airflow:airflow" http://localhost:8080/api/v1/dags
3. 모든 Variable를 리스트하기
curl -X GET --user "airflow:airflow" http://localhost:8080/api/v1/variables
4. 모든 Config를 리스트하기 - 이것은 기본적으로 막혀있다.(404에러 발생)
curl -X GET --user "airflow:airflow" http://localhost:8080/api/v1/config
variables, connections 정보를 json파일로 저장
airflow variables export variables.json
airflow connections export connections.json
json으로 저장된 variables, connections 정보를 airflow저장
airflow variables import variables.json
airflow connections import connections.json
'데브코스' 카테고리의 다른 글
데이터 엔지니어링 54일차 TIL (0) | 2024.06.06 |
---|---|
데이터 엔지니어링 53일차 TIL (1) | 2024.06.05 |
데이터 엔지니어링 51일차 TIL (1) | 2024.06.05 |
데이터 엔지니어링 50일차 TIL (1) | 2024.06.05 |
데이터 엔지니어링 49일차 TIL (0) | 2024.06.05 |